硈籔硈计

硈计 (Primorial Prime)  p# +/- 1 ぇ计 (闽 p# ぇ﹚竡把σゅざ残ㄢ计厩才腹)ㄤい  p# + 1 嘿稼碭ń紈计 (Euclid Number ┪ Euclidean Number)讽い计獽琌稼碭ń紈计 (Euclid Prime ┪ Euclidean Prime)Τ琌稼碭ń紈 (Euclid 玡325 - 玡265) 靡计计礚 (冈ǎゅぱ计Τぶ) ノ计τ眔

 p# + 1 ぇ计 2# + 1 = 33# + 1 = 75# + 1 = 31 单癸莱材 n计 p  p# + 1 计 n  1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413, 13494, 31260, 33237 ... (OEIS A014545)

 p# - 1 ぇ计 3# - 1 = 55# - 1 = 29 7# - 1 = 219 单癸莱 材 n计 p  p# - 1 计 n  2, 3, 5, 6, 13, 24, 66, 68, 167, 287, 310, 352, 564, 590, 620, 849, 1552, 1849, ...(OEIS A057704)

τ硈计 (Compositoral Prime)  n!/n# +/- 1 ぇ计

 n!/n# + 1 ぇ计 4!/4# + 1 = 58!/8# + 1 = 193 单τ n!/n# - 1 ぇ计 4!/4# - 1 = 36!/6# - 1 = 23 8!/8# - 1 = 191单

把σゅ膍の呼

Caldwell, C. K. "The Top Twenty: Primorial." http://primes.utm.edu/top20/page.php?id=5.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 7-8, 1994.

Weisstein, E. W. "Primorial Prime." From MathWorld. http://mathworld.wolfram.com/PrimorialPrime.html.