素數也有好與不好

英國數學家蓋伊 (Richard Kenneth Guy  1916- )

(照片取自「Wikipedia」http://en.wikipedia.org/wiki/Richard_K._Guy )

 

 

3 不是好的,5是好的,7不是好的,11是好的,13是不好的,17是好的,19不是好的,23不是好的,29是好的......

大家猜猜看我們為何會有這樣的結果,什麼素數 (Prime Number) 是好的 (Good)?什麼素數又不是好的?

 

原來在 1994 年 英國數學家蓋伊 (Richard Kenneth Guy  1916- ) 的一本著作《數論中未解決的問題》(Unsolved Problem In Number Theory) 中引用了愛爾特希 (Paul Erdos 1913 - 1996) 作的一個定義:

第 n個素數 Pn 若是好的則其必須符合

其中 i 為不少於 n-1 的整數。

 

若不符合上列要求,這素數便不是好的。因為 2 是第一個素數,故好與不好也無法定義在 2 這惟一的偶素數 (Even Prime) 之上。

我們以 20 以內的素數作測試,看一看它們誰是好的 :

3 : 3*3 = 9 < 10 = 2*5,所以 3 不是好的;

5 : 5*5 = 25 > 21 = 3*7,且 25 > 22 = 2*11,所以 5 是好的;

7 : 7*7 = 49 < 55 = 5*11,所以 7 不是好的;

11:11*11 = 121 > 91 = 7*13,且 121 > 85 = 5*17,且 121 > 57 = 3*19,且 121 > 46 = 2*23,因此 11 是好的;

13:13*13 = 169 < 187 = 11*17,因此 13 不是好的;

17:17*17 = 289 > 249 = 13*19,且 289 > 253 = 11*23,且 289 > 203 = 7 * 29 ,且 289 > 155 = 5*31, 且 289 > 111 = 3*37,且 289 > 86 = 2*43,因此 17 是好的;

19:19*19 = 361 < 391 = 17*23,因此 19 不是好的素數。

 

原來好的素數 (Good Prime) 也有無限個之多,而開始的則為 5、11、17、29、37、41、53、...... (OEIS A028388)。我們不難理解這素數好與不好,是和素數間隙 (Prime Gap) ,即兩連續素數之間的差,有些關係。

 

好的素數是否存有無限多個呢?美國數學家塞爾弗里奇 (John L. Selfridge 1953- ) 認為存有無限多個,這亦是塞爾弗里奇猜想 (Selfridge Conjecture) 的前半部。該猜想的後半部則認為能達至下式的素數也存有無限多個。

 

參考文獻及網址

Guy, R. K. "'Good' Primes and the Prime Number Graph." §A14 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 32-33, 1994.

Weisstein, E. W. "Good Prime." From MathWorld. http://mathworld.wolfram.com/GoodPrime.html.